Fork me on GitHub

New entity, Exxelia Magnetics

Exxelia announces the fusion of its two companies, Exxelia Microspire and Exxelia N’Ergy, to create a single company Exxelia Magnetics.


This is an internal merger of two innovative, professional and complementary companies both designer and manufacturer of high-end would magnetic components, which have a history of successfully working together for a year.

Exxelia Magnetics will have greater scale, breadth and capabilities to compete more effectively in the global marketplace.

Exxelia Microspire

Microspire was founded in 1978 and became part of Exxelia Group in 2008.

Exxelia Microspire has been designing, developing and manufacturing wound components for over 35 years: transformers and inductors, electro-magnets, rotors and stators.

Exxelia Microspire has several manufacturing sites, notably newly located low production cost facilities offering competitive solutions.

Exxelia Microspire’s know-how includes standard winding technologies: linear (in RM, ETD, EP, EFD, ER, EQ and other formats) and toroid. For harsh environment applications with shock, vibration, and high temperature issues, Microspire offers innovative specific technologies including SESI, TT and CCM.

Exxelia Microspire’s qualified technologies, clearly defined design rules and industrial organization provide the platform on which it is able to offer its customers optimal solutions.

Exxelia N'Ergy

Exxelia N’Ergy (ex N’Ergy) was acquired in 2015 by Exxelia Group.  Exxelia N’Ergy designs and manufactures passive specific electromagnetic components in small and medium range:

Transformers,
Chokes,
Sensors (tachometer, gyros, …),
Electromagnets.

Published on 07 Jun 2016 by Marion Van de Graaf

Exxelia at Space Tech Expo

ESA QPL Film Capacitors PM907S and PM948S are full series of Polyester Film Capacitors. PM907S products are suitable for voltages from 50V up to 1250V and offer capacitance values from 82nF up to 180μF. PM948S can be used from 50V up to 630V with capacitance values from 22nF up to 47μF. Both series can support extreme conditions with temperatures from -55°C to +125°C, and offer high energy density, low ESR & ESL and high RMS current. Film capacitor Series PM907S and PM948S are ESA QPL certified according to the ESCC Detail Specification No. 3006/025 and 3006/026   Smallest ESA QPL Ceramic Capacitor of the Market Exxelia ranges of low voltage MLCC for surface mounting, CEC19 and CNC19, have achieved the ESA Qualified Part List status under the criteria of the European Space Component Coordination’s (ESCC) 3009/042 and 3009/043 respectively. The  0402 size QPL-qualified parts are available from 10V to 25V, enabling substantial miniaturization and cost-saving. They are available either in the very stable NPO dielectric (type 1) or the high capacitance X7R (type 2). CEC and CNC series combine high capacitance values with high thermal and voltage stability. Versions with polymer terminations are also QPL-certified.   Miniature EMI filters for space application Exxelia’s gold-plated glass-sealed EMI filters SFC030 is the solution of choice to protect several embedded power supplies and data lines.  These small and reliable filters are available up to 5A @ 200V and 22nF.  Available in a Kovar package, the better alternative to steel for enhanced temperature cycling resistance, all Exxelia’s EMI filters for space are ESA qualified according to ESCC 3008. Thanks to this extensive experience in stringent ESA testing, Exxelia is able to adapt the tests of any filter according to any need (example: SMD 20A chip, 0pF capacitor value for an arrays of filters).

SPACE & MILITARY GRADE PASSIVES AT CMSE - BOOTH # B13 -

CMSE is one of the most recognized conference dedicated to the use of component in military and space systems. As a key supplier of highly reliable passive components, Exxelia will be displaying in booth B13, a wide variety of military and space-qualified capacitors (ceramic, tantalum, film, electrolytic aluminum), wound magnetics solutions and EMI/RFI filters. Two new ranges of MIL-qualified tantalum capacitors: MIL39006/22 & MIL39006/25  The recently introduced ranges of MIL-qualified tantalum capacitors will be showcased on the company booth (B13). MIL 39006/22 and MIL 39006/25 respectively equivalent to CLR79 and CLR81 types feature hermetically sealed cylindrical tantalum cases and axial leads are available in T1, T2 T3 and T4 cases with extended capacitance and voltage ratings. MIL 39006/22 is qualified for voltages from 6V to 125V and provides from 1200µF @ 6V to 56 µF @ 125V. MIL 39006/25 is qualified for voltages from 25V to 125V and delivers from 680µF @ 25V to 82 µF @ 125V. Both ranges combine high energy density with a large operating temperature range of -55°C - +125°C and H vibrations and shocks resistance. Alsic 20G, Aluminum Electrolytic capacitors with large operating temperatures  Alsic 20G is a range of radial leaded aluminum electrolytic capacitors for typical use in military and aerospace high frequency switch-mode power supplies requiring advanced performance under all operating conditions. Alsic 20G operational rated life is 8,000 hours at rated voltage and 105°C, and provides from 330µF @ 500V to 80 000μF @16V. The range features ruggedized design with insulating aluminum case and tin coated leads. With capacitance stability at high temperature, low inductance and impedance, competitive ESR and high ripple current, these capacitors are perfectly adapted for mission-critical applications.  C48X dielectric: NPO and X7R advantages combined Under working voltage, C48X dielectric provides equivalent capacitance values to an X7R material with the advantage of a very low dissipation factor (less than 5.10-4). It can also withstand very high dV/dt, up to 10kV/µs which makes it perfect for pulse and charge/discharge applications for firing units. Exxelia’s C48X capacitors, available from 200V to 5kV with EIA sizes from 1812 to 16080, are ideally suited for power applications where heat dissipation may be detrimental to performances and reliability, such as 400Hz Aircraft, Ignition systems, and Space, or as Precision/filtering capacitance in thermally challenged environment for AC or DC voltage.  

This website uses cookies for statistics purposes. By continuing to browse the site you are agreeing to our use of cookies.