New entity, Exxelia Magnetics

Exxelia announces the fusion of its two companies, Exxelia Microspire and Exxelia N’Ergy, to create a single company Exxelia Magnetics.


This is an internal merger of two innovative, professional and complementary companies both designer and manufacturer of high-end would magnetic components, which have a history of successfully working together for a year.

Exxelia Magnetics will have greater scale, breadth and capabilities to compete more effectively in the global marketplace.

Exxelia Microspire

Microspire was founded in 1978 and became part of Exxelia Group in 2008.

Exxelia Microspire has been designing, developing and manufacturing wound components for over 35 years: transformers and inductors, electro-magnets, rotors and stators.

Exxelia Microspire has several manufacturing sites, notably newly located low production cost facilities offering competitive solutions.

Exxelia Microspire’s know-how includes standard winding technologies: linear (in RM, ETD, EP, EFD, ER, EQ and other formats) and toroid. For harsh environment applications with shock, vibration, and high temperature issues, Microspire offers innovative specific technologies including SESI, TT and CCM.

Exxelia Microspire’s qualified technologies, clearly defined design rules and industrial organization provide the platform on which it is able to offer its customers optimal solutions.

Exxelia N'Ergy

Exxelia N’Ergy (ex N’Ergy) was acquired in 2015 by Exxelia Group.  Exxelia N’Ergy designs and manufactures passive specific electromagnetic components in small and medium range:

Transformers,
Chokes,
Sensors (tachometer, gyros, …),
Electromagnets.

Publié le 07 Jun 2016 par Marion Van de Graaf

Exxelia expose à PCIM

Two new ranges of MIL-qualified tantalum capacitors: MIL39006/22 & MIL39006/25 The recently introduced ranges of MIL-qualified tantalum capacitors will be showcased on the company booth. MIL 39006/22 and MIL 39006/25 respectively equivalent to CLR79 and CLR81 types featuring hermetically sealed cylindrical tantalum cases and axial leads are available in T1, T2 T3 and T4 cases with extended capacitance and voltage ratings. MIL 39006/22 is qualified for voltages from 6V to 125V and provides from 1200µF @6V to 56µF @125V. MIL 39006/25 is qualified for voltages from 25V to 125V and delivers from 680µF @25V to 82µF @125V. Both ranges combine high energy density with a large operating temperature range of -55°C - +125°C and H vibrations and shocks resistance. PHM 912, very high energy density film capacitors PHM 912 is a new standard series of film capacitors based on a novel metallized plastic film dielectric from Dupont Teijin®. The PHM 912 capacitors are specifically designed for DC filtering or energy storage. Very stable in both temperature and frequency, they are well-adapted for applications such as filtering in H.F. switch mode power supplies, DC link or decoupling. The range can withstand temperatures up to 155°C and up to 175°C in custom version. With their high energy density, these capacitors allow highly integrated power filters. Their compact construction results in a low ESR, ESL and excellent high current and frequency performances. The series provides 250V @68µF and 0,27µF @1000V.  The PHM 912 series makes significant advances over previous technologies by combining the benefits of excellent temperature resistance with superior energy densities, making it one of the most compact capacitors on the market. Felsic HV, long lifetime and high voltage screw terminal aluminum electrolytic capacitor The Felsic HV family of aluminum electrolytic screw terminal capacitors provides great performances in energy density combined with ultra-long lifetime. For instance, 6 800µF @450V fit into a volume of Ø77x220mm  and can withstand 200,000 hours between 0 to 70° under 37Amps, which makes them the perfect choice for use in rolling stock traction systems or the CVS. The family also has one of the lowest ESR of its class with less than 10m0hms in most cases. Products are available for voltages from 160 to 450Vdc, and offer capacitance values from 1500μF up to 47 000μF offering the best compromise between reliability and compactness.

Exxelia à Railtex 2017

Felsic HV, long lifetime and high voltage screw terminal aluminum electrolytic capacitor The Felsic HV family of aluminum electrolytic screw terminal capacitors provides great performances in energy density and ultra-long lifetime. For instance, 6 800µF @450V fit into a  volume of Ø77 x 220mm  and can withstand 200,000h between 0 to 70° under 37Amps, which makes them the perfect choice for use in rolling stock traction systems or the CVS. The family also has one of the lowest ESR for aluminum capacitors with less than 10m0hms in most cases. Products are available for voltages from 160 to 450 Vdc, and offer capacitance values from 1500μF up to 47 000μF offering the best compromise between reliability and compacity.     Snapsic HV, high voltage snap aluminum electrolytic capacitor Because it covers voltages from 16 to 500Vdc and temperatures up to +105°C, and because it is customizable, the Snapsic HV series is very versatile and can cover all needs of energy storage in medium voltage both in rolling stock equipment or signaling systems. Thanks to its high ripple current, it is often used in SMPS and HVAC rolling stocks units with a typical variation of 470µF @450V in Ø35 x 50mm, as well as in various signaling control units, where a smaller package can be used with for example 1 000µF @250V in Ø35 x 40mm.   Prorelsic, the long lifetime axial aluminum electrolytic capacitors for signaling equipment Exxelia’s range of aluminum electrolytic solutions would not be complete without the axial leaded Prorelsic series. These capacitors show high ripple current and extra-long life-time with 20 000h @105°C. The most common sizes are Ø8.5 x 19mm, Ø10 x 19mm and Ø12 x 30mm, with typical values of 47µF @40V, 100µF @25V and 47µF @100V respectively. Prorelsic capacitors are perfectly suited for smoothing, coupling/decoupling and energy storage functions in railway signaling equipment.

En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies pour réaliser des statistiques de visites.