EDICON China

Exxelia is exhibiting at EDICON China, Shanghai. From April 25 to 27 at booth#122, the company will be previewing several new microwave and RF components dedicated to a variety of industries including medical, transportation and defense.


Ultra low ESR, high RF power and high self-resonant frequency               
The new NHB series is a complete range of MLCC based on NPO dielectric material providing a very high Self Resonant Frequency and limiting the parasite Parallel Resonant Frequencies. The series is available in 1111 size with capacitance ranging from 0. 3pF to 100pF. NHB series offers excellent performance for RF power applications at high temperature up to 175°C and at 500 VDC. The lowest ESR is obtained by combining highly conductive metal electrodes and proprietary of new NPO low loss rugged dielectrics. NHB series particularly fits for high power and high frequency applications such as: cellular base station equipment, broadband wireless service, point to point / multipoint radios and broadcasting equipment. Typical circuit applications: impedance matching, bypass, feedback, tuning, coupling and DC blocking.

100% invar tuning screws with self-locking system         
Invar ScrewsEnsemble SIC SAFCO 1Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed.

High Q Factor Dielectric Resonators
E7000 photoDielectric resonators are designed to replace resonant cavities in microwave functions such as filters and oscillators. Exxelia has developed with support of ESA and CNES, a new high-end dielectric material, E7000 series, designed for high-end filters where high Q factor is requested.
E7000 is Ba-Mg-Ta materials based that combines an ultra-high Q factor and the possibility to get all the temperature coefficients upon request. E7000 provides high-performance requested for space use in the frequency range 5 to 32 GHz, and guarantees up to Qxf > 250 000 at 10GHZ. Typical applications: Satellite multiplexing filter devices, radio links for communication systems (LMDS), military radars.

Published on 03 Apr 2017 by Marion Van de Graaf

Exxelia at Eurosatory

State-of-the art absolute optical encoders Exxelia has acquired deep expertise in the development of contactless position sensors of several type: absolute and incremental optical encoders, magnetic technology and inductive sensors. Several ranges of state-of-the-art absolute optical encoders will be showcased at the company booth - Hall 5A booth# E543. Absolute optical encoders are position sensors that use optical signals to identify an absolute angular position. They provide the highest resolution, operating speed reliability as well as long life operation in most demanding environments. Exxelia ranges of absolute optical encoders offer very high performance levels for a very small footprint: high precision (<30arcsc.), high resolution (up to 21 bits), extreme thinness (10mm) and EMI EMC compatibility. With their compact design, Exxelia miniature encoders meet the requirements of the most demanding application such as aerospace, defense, medical, oil & mining industries. Various protocols are available to match with any application.  Exxelia encoders can be easily combined with other functions such as slip rings to provide customers turkey solutions.   Two new ranges of MIL-qualified wet tantalum capacitors: MIL39006/22 & MIL39006/25 The recently introduced ranges of MIL-qualified tantalum capacitors will be showcased on the company booth. MIL 39006/22 and MIL 39006/25 respectively equivalent to CLR79 and CLR81 types featuring hermetically sealed cylindrical tantalum cases and axial leads are available in T1, T2 T3 and T4 cases with extended capacitance and voltage ratings. MIL 39006/22 is qualified for voltages from 6V to 125V and provides from 1200µF @6V to 56µF @125V. MIL 39006/25 is qualified for voltages from 25V to 125V and delivers from 680µF @25V to 82µF @125V. Both ranges combine high energy density with a large operating temperature range of -55°C - +125°C and H vibrations and shocks resistance.  

Exxelia Ohmcraft’s Small, Low-Noise Resistors Maximize Design Options and Accuracy for Sensor Manufacturers

For more than 25 years, leading sensor manufacturers have turned to Exxelia Ohmcraft to provide small-form-factor, ultra-low-noise surface mount resistors to be used in a variety of critical sensor applications. In these applications, Exxelia Ohmcraft’s resistors enable designers to miniaturize the sensor’s footprint or accommodate multiple sensors in close proximity to each other—all while increasing accuracy of the end products. Resistors have a certain amount of electrical noise that is inherent in their construction, and the higher the noise, the more distorted the signal can become. Exxelia Ohmcraft’s high-resistance, low-noise chip resistors provide clearer signals to the sensor electronics, thereby improving their accuracy. To ensure requirements are met for specialty sensors such as those used to measure acceleration, velocity, or vibration, Exxelia Ohmcraft works closely with design engineers, who appreciate the combination of high performance, reliability, and small form factor that the company can provide. “Finding resistors that check all of these boxes can be a challenge for sensor designers. At Exxelia Ohmcraft, our understanding of these requirements allows us to provide the highest performing solution at the lowest possible cost,” said Eric Van Wormer, Vice President of Exxelia Ohmcraft. "In sensor electronics, it can be difficult to distinguish the signal one is trying to measure from the noise of the surrounding environment, but our low-noise resistors ensure that the signal quality is maximized.” Exxelia Ohmcraft’s technology utilizes the proprietary Micropen electronic printing system to “print” precise, narrow, serpentine lines with resistive ink on a ceramic substrate, producing higher performance resistors over a wider range of values on a smaller surface area than is possible with conventional film resistor technology.