QPL CERTIFICATION FOR PM907S & PM948S SERIES OF FILM CAPACITORS

Exxelia is pleased to announced the ESA/QPL certification for its film capacitors series PM907S and PM948S.


Series PM907S and PM948S of Film capacitors obtained the QPL certification from the European Space Components Coordination (ESCC). According to the ESCC Detail Specification No. 3006/025 and 3006/026 QPL certified products ensure superior performances, quality and reliability intended for use by the European Space Agency (ESA) and in Space in general.

PM907S and PM948S are full series of Polyester Film Capacitors. PM907S products are suitable for voltages from 50V up to 1250V and offer capacitance values from 82nF up to 180μF. PM948S can be used with a voltages from 50V up to 630V with capacitance values from 22nF up to 47μF. Both series can support extreme conditions with temperatures from -55°C to +125°C, and offer high energy density, low ESR & ESL and high RMS current.

Products are typically being used in SMPS (Switch Mode Power Suppliers) and BUS filtering.

These two certified series complete the list of Exxelia Group’s QPL certified film capacitors, that now includes:

– PM90S
– PM907S
– PM96S (T)
– PM94S
– PM948S
– MKT5
– KM111S
– KM94S

Published on 28 Jun 2016 by Marion Van de Graaf

Exxelia at Space Tech Expo – Booth #5009

100% invar tuning screws with self-locking system  Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed. High power and high frequency ceramics with the new C48X dielectric Range of high voltage ceramic capacitors based on brand new dielectric material C48X, combining most advantages of NPO and X7R dielectrics. Compared to X7R material, C48X dielectric allows to get the same capacitance values under working voltage with the unrivaled advantage of a very low dissipation factor (less than 5.10–4). Besides, it can also withstand very high dV/dt, up to 10kV/μs, which makes it the solution of choice for pulse and fast charge/discharge applications or firing units. Thus capacitors with C48X dielectric appear to be ideally suited for power applications where heat dissipation may be detrimental to performances and reliability. Magnetic components based on adaptive CCM technology Exxelia designed CCM technology to respond to the growing interest of electronic engineers for inductors and transformers with multiple outputs, high power density and reduced footprint. Qualified for aeronautic and space applications, the CCM product line features terrific robustness. The CCM technology adapts to most every need, even the harshest environments, including VIGON® resistance. The series offers five different sizes, allowing optimized component design in a pick-and-place surface mount (SMD) package. Through-hole (TH) packages are also available upon request. CCM transformers and inductors can operate over a wide temperature range with a minimal temperature of -55° C. The standard thermal grade of the technology is 140° C. The epoxy molding protecting the winding ensures a lower temperature gradient and a better heat dissipation. Each unit is thoroughly tested with a dielectric withstanding strength of 1,500 VAC.

Exxelia acquires Deyoung MFG., INC.

“The DMI acquisition directly supports our Magnetics SBU expansion strategy. DMI’s strategic location in the Pacific Northwest aerospace market provides a key geographic location for driving growth and profitability,” said François Vignaud, Exxelia Magnetics’ SBU VP. “DMI is highly regarded for the quality of its products and the operational performance of its organization. DMI products can be found on most major commercial aerospace platforms, supporting in flight power, lighting and entertainment sub-systems.” “We welcome DMI into the Exxelia Group,” said Exxelia USA President Michael Thomas. “During its 40-plus years in business, DMI has built solid customer relationships with a strong brand reputation in the aerospace, medical and other high-reliability magnetics markets. Acquiring DMI creates the potential for both revenue and cost synergies related to cross selling and procurement savings as we leverage Exxelia Group’s broader global supply chain and operational excellence practices to support DMI’s operations.” According to Martin DeYoung, President & CEO of DMI, “We are excited to now be a part of Exxelia’s growth and expanded product offerings. The DeYoung’s recognized a shared business culture driven by a passion for quality and customer loyalty. By joining Exxelia Group we achieve a goal of meeting our strategic growth objectives while protecting our long standing relationships with our key aerospace customers and their contract manufacturers.” “This acquisition addresses our aerospace customers increasing requirements for global manufacturing access and timely support” stated Eric DeYoung, VP of Operations at DMI. “Together, we have global reach with the capability to serve our customers – whatever their size, location, or aerospace industry sector with one of the most comprehensive and competitive groups of design and manufacturing capabilities.”

This website uses cookies for statistics purposes. By continuing to browse the site you are agreeing to our use of cookies.