New Plug&Play filters for datacenters and mission critical facilities

New unrivalled Plug & Play TEMPEST filters for data centers and mission critical facilities.


Electronic equipment can leak sensitive information over conducted or radiated electromagnetic emanations, and signals transmitted down unprotected lines can potentially be intercepted. That’s why filters are implemented into systems to prevent EMI disturbances, as TEMPEST filters stop the high frequency EM signals (or noise) emanating inside the secured environment.

Exxelia has a long history of manufacturing state-of-the-art electromagnetic interference (EMI) filtering technologies for space, avionic and defense markets. Thanks to this in-depth knowledge, Exxelia came to the conclusion that the installation of a product is as critical as its reliability, especially when shielding continuity and sensitive copper terminals are involved.

That’s where Exxelia’s new full range of TEMPEST pluggable filters will save time and spare headaches! The 9260W series is a multi-socket line extension with a built-in 16A Tempest filter (minimum 60dB, from 100KHz to 1GHz), CE qualified according to EM 60950-1 standard. 9260W series Plug&Play solution is available with UK, US and EU standard plugs and can be provided with any other standard plug upon request.
In addition, Exxelia completed its offer with the 9259W series of pluggable filters featuring various plug interfaces such as VGA/DVI, USB, Ethernet, Phone, Audio and much more.

9260W series and 9259W series are both fully compliant with EMC expectations and allow considerable time saving and cost-effectiveness. When a standard filter needs to be wired and shielded to each socket one-by-one before carefully re-closing the whole equipment, Exxelia new series can be installed using no special tools and with a smaller footprint. To all people handling sensitive information, a simple plugging operation is now enough to protect their data.

Available now, 9259W and 9260W series are fully customizable upon request.

Published on 15 Mar 2017 by Marion Van de Graaf

Magnetic Components based on Adaptive CCM Technology at APEC – Booth# 653 –

Exxelia will exhibit the CCM series during the Applied Power Electronics Conference at Exxelia’s booth #623 from March 27-30, 2017 in Tampa, FL. Exxelia designed CCM technology to respond to the growing interest of electronic engineers for inductors and transformers with multiple outputs, high power density and reduced footprint. Qualified for aeronautic and space applications, the CCM product line features terrific robustness. The monolithic design provides high mechanical performance, proven by the successfully testing in accordance with MIL-STD-202 (methods 213 and 204). The series offers five different sizes, allowing optimized component design in a pick-and-place surface mount (SMD) package. Through-hole (TH) packages are also available upon request. The CCM series is particularly flexible with a number of pins options available, from 2×6 pins for the smallest package, up to 2×10. CCM transformers and inductors can operate over a wide temperature range with a minimal temperature of -55° C. The standard thermal grade of the technology is 140° C. Thanks to the technology design, the thermal resistance is 30% lower than standard industrial components. The epoxy molding protecting the winding ensures a lower temperature gradient and a better heat dissipation. Each unit is thoroughly tested with a dielectric withstanding strength of 1,500 VAC.  Component materials meet UL 94-V0 rating. Exxelia can evaluate losses and related temperature rise thanks to an in-depth knowledge of CCM technology. Thermal resistance data is available for each package size. Exxelia can also manufacture products in CCM technology according to MIL-STD-981.

Exxelia at Space Tech Expo – Booth #5009

100% invar tuning screws with self-locking system  Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed. High power and high frequency ceramics with the new C48X dielectric Range of high voltage ceramic capacitors based on brand new dielectric material C48X, combining most advantages of NPO and X7R dielectrics. Compared to X7R material, C48X dielectric allows to get the same capacitance values under working voltage with the unrivaled advantage of a very low dissipation factor (less than 5.10–4). Besides, it can also withstand very high dV/dt, up to 10kV/μs, which makes it the solution of choice for pulse and fast charge/discharge applications or firing units. Thus capacitors with C48X dielectric appear to be ideally suited for power applications where heat dissipation may be detrimental to performances and reliability. Magnetic components based on adaptive CCM technology Exxelia designed CCM technology to respond to the growing interest of electronic engineers for inductors and transformers with multiple outputs, high power density and reduced footprint. Qualified for aeronautic and space applications, the CCM product line features terrific robustness. The CCM technology adapts to most every need, even the harshest environments, including VIGON® resistance. The series offers five different sizes, allowing optimized component design in a pick-and-place surface mount (SMD) package. Through-hole (TH) packages are also available upon request. CCM transformers and inductors can operate over a wide temperature range with a minimal temperature of -55° C. The standard thermal grade of the technology is 140° C. The epoxy molding protecting the winding ensures a lower temperature gradient and a better heat dissipation. Each unit is thoroughly tested with a dielectric withstanding strength of 1,500 VAC.

This website uses cookies for statistics purposes. By continuing to browse the site you are agreeing to our use of cookies.